Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Diabetes Sci Technol ; 18(2): 266-272, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37747075

ABSTRACT

BACKGROUND: Accurately identifying eating patterns, specifically the timing, frequency, and distribution of eating occasions (EOs), is important for assessing eating behaviors, especially for preventing and managing obesity and type 2 diabetes (T2D). However, existing methods to study EOs rely on self-report, which may be prone to misreporting and bias and has a high user burden. Therefore, objective methods are needed. METHODS: We aim to compare EO timing using objective and subjective methods. Participants self-reported EO with a smartphone app (self-report [SR]), wore the ActiGraph GT9X on their dominant wrist, and wore a continuous glucose monitor (CGM, Abbott Libre Pro) for 10 days. EOs were detected from wrist motion (WM) using a motion-based classifier and from CGM using a simulation-based system. We described EO timing and explored how timing identified with WM and CGM compares with SR. RESULTS: Participants (n = 39) were 59 ± 11 years old, mostly female (62%) and White (51%) with a body mass index (BMI) of 34.2 ± 4.7 kg/m2. All had prediabetes or moderately controlled T2D. The median time-of-day first EO (and interquartile range) for SR, WM, and CGM were 08:24 (07:00-09:59), 9:42 (07:46-12:26), and 06:55 (04:23-10:03), respectively. The median last EO for SR, WM, and CGM were 20:20 (16:50-21:42), 20:12 (18:30-21:41), and 21:43 (20:35-22:16), respectively. The overlap between SR and CGM was 55% to 80% of EO detected with tolerance periods of ±30, 60, and 120 minutes. The overlap between SR and WM was 52% to 65% EO detected with tolerance periods of ±30, 60, and 120 minutes. CONCLUSION: The continuous glucose monitor and WM detected overlapping but not identical meals and may provide complementary information to self-reported EO.


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Adult , Female , Humans , Middle Aged , Aged , Male , Wrist , Self Report , Prediabetic State/diagnosis , Diabetes Mellitus, Type 2/diagnosis , Continuous Glucose Monitoring , Blood Glucose Self-Monitoring , Blood Glucose , Obesity/diagnosis
2.
J Diabetes Sci Technol ; : 19322968231181138, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37350111

ABSTRACT

BACKGROUND: Simulated data are a powerful tool for research, enabling benchmarking of blood glucose (BG) forecasting and control algorithms. However, expert created models provide an unrealistic view of real-world performance, as they lack the features that make real data challenging, while black-box approaches such as generative adversarial networks do not enable systematic tests to diagnose model performance. METHODS: To address this, we propose a method that learns missingness and error properties of continuous glucose monitor (CGM) data collected from people with type 1 diabetes (OpenAPS, OhioT1DM, RCT, and Racial-Disparity), and then augments simulated BG data with these properties. On the task of BG forecasting, we test how well our method brings performance closer to that of real CGM data compared with current simulation practices for missing data (random dropout) and error (Gaussian noise, CGM error model). RESULTS: Our methods had the smallest performance difference versus real data compared with random dropout and Gaussian noise when individually testing the effects of missing data and error on simulated BG in most cases. When combined, our approach was significantly better than Gaussian noise and random dropout for all data sets except OhioT1DM. Our error model significantly improved results on diverse data sets. CONCLUSIONS: We find a significant gap between BG forecasting performance on simulated and real data, and our method can be used to close this gap. This will enable researchers to rigorously test algorithms and provide realistic estimates of real-world performance without overfitting to real data or at the expense of data collection.

3.
Neurocrit Care ; 38(1): 118-128, 2023 02.
Article in English | MEDLINE | ID: mdl-36109448

ABSTRACT

BACKGROUND: Impaired consciousness is common in intensive care unit (ICU) patients, and an individual's degree of consciousness is crucial to determining their care and prognosis. However, there are no methods that continuously monitor consciousness and alert clinicians to changes. We investigated the use of physiological signals collected in the ICU to classify levels of consciousness in critically ill patients. METHODS: We studied 61 patients with subarachnoid hemorrhage (SAH) and 178 patients with intracerebral hemorrhage (ICH) from the neurological ICU at Columbia University Medical Center in a retrospective observational study of prospectively collected data. The level of consciousness was determined on the basis of neurological examination and mapped to comatose, vegetative state or unresponsive wakefulness syndrome (VS/UWS), minimally conscious minus state (MCS-), and command following. For each physiological signal, we extracted time-series features and performed classification using extreme gradient boosting on multiple clinically relevant tasks across subsets of physiological signals. We applied this approach independently on both SAH and ICH patient groups for three sets of variables: (1) a minimal set common to most hospital patients (e.g., heart rate), (2) variables available in most ICUs (e.g., body temperature), and (3) an extended set recorded mainly in neurological ICUs (absent for the ICH patient group; e.g., brain temperature). RESULTS: On the commonly performed classification task of VS/UWS versus MCS-, we achieved an area under the receiver operating characteristic curve (AUROC) in the SAH patient group of 0.72 (sensitivity 82%, specificity 57%; 95% confidence interval [CI] 0.63-0.81) using the extended set, 0.69 (sensitivity 83%, specificity 51%; 95% CI 0.59-0.78) on the variable set available in most ICUs, and 0.69 (sensitivity 56%, specificity 78%; 95% CI 0.60-0.78) on the minimal set. In the ICH patient group, AUROC was 0.64 (sensitivity 56%, specificity 65%; 95% CI 0.55-0.74) using the minimal set and 0.61 (sensitivity 50%, specificity 80%; 95% CI 0.51-0.71) using the variables available in most ICUs. CONCLUSIONS: We find that physiological signals can be used to classify states of consciousness for patients in the ICU. Building on this with intraday assessments and increasing sensitivity and specificity may enable alarm systems that alert physicians to changes in consciousness and frequent monitoring of consciousness throughout the day, both of which may improve patient care and outcomes.


Subject(s)
Consciousness , Subarachnoid Hemorrhage , Humans , Persistent Vegetative State/diagnosis , Coma/diagnosis , Intensive Care Units , Brain , Cerebral Hemorrhage/diagnosis , Subarachnoid Hemorrhage/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...